Physical and Electrochemical Effect of Bimetallic Pd–Mo Nanoalloys Supported on Vulcan XC-72R Carbon as Cathode Catalysts for Proton Exchange Membrane Fuel Cell

Best Online Casinos

 


1. Sol Casino

Sol casino keyword

Free Sign-Up Bonus: 150 Free Spins ( Free Sign-Up Bonus Link )

 

First Deposit Bonus: 150% up to €/$ 500 ( Registration Link )

 

OPEN SOL CASINO

 


 

2. Fresh Casino

fresh casino

Free Sign-Up Bonus: 50 Free Spins ( Free Sign-Up Bonus Link )

 

First Deposit Bonus: 200% up to €/$ 200 ( Registration Link )

 

ENTER FRESH CASINO

 


 

 

3. Jet Casino

jet casino

Free Sign-Up Bonus: 70 Free Spins ( Free Sign-Up Bonus Link )

 

First Deposit Bonus: 100% up to €/$ 500 ( Registration Link )

 

SIGN-UP JET CASINO

 


 

 

 

Physical and Electrochemical Effect of Bimetallic Pd–Mo Nanoalloys Supported on Vulcan XC-72R Carbon as Cathode Catalysts for Proton Exchange Membrane Fuel Cell

References

  1. Y. Wang, X. Wang, X. Wang, T. Liu, T. Zhu, S. Liu et al., Droplet dynamic characteristics on PEM fuel cell cathode gas diffusion layer with gradient pore size distribution. Renew. Energy. 178, 864–874 (2021)

    Article 
    Google Scholar 

  2. M. Çögenli, S. Mukerjee, A.B. Yurtcan, Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition. Fuel Cells. 15, 288–297 (2015)

    Article 
    Google Scholar 

  3. S. Huo, W. Shi, R. Wang, B. Lu, Y. Wang, K. Jiao et al., Elucidating the operating behavior of PEM fuel cell with nickel foam as cathode flow field. Sci. China Technol. Sci. 64, 1041–1056 (2021)

    Article  CAS 
    Google Scholar 

  4. L. Lin, X. Zhang, H. Feng, X. Wang, Optimization of a serpentine flow field with variable channel heights and widths for PEM fuel cells. Sci. China Technol. Sci. 53, 453–460 (2010)

    Article  CAS 
    Google Scholar 

  5. J. Zhao, X. Li, A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Convers. Manage. 199, 112022 (2019)

    Article  CAS 
    Google Scholar 

  6. X. Lü, Y. Wu, J. Lian, Y. Zhang, C. Chen, P. Wang et al., Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers. Manage. 205, 112474 (2020)

    Article 
    Google Scholar 

  7. H. Yang, W. Lee, B. Choi, Y. Ko, S. Yi, W. Kim, Self-humidifying Pt-C/Pt-TiO2 dual-catalyst electrode membrane assembly for proton-exchange membrane fuel cells. Energy. 120, 12–19 (2017)

    Article  CAS 
    Google Scholar 

  8. D. Fofana, S.K. Natarajan, J. Hamelin, P. Benard, Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach. Energy. 64, 398–403 (2014)

    Article  CAS 
    Google Scholar 

  9. M. Sahoo, S. Ramaprabhu, Nitrogen and sulfur co-doped porous carbon–is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell? Energy. 119, 1075–1083 (2017)

    Article  CAS 
    Google Scholar 

  10. Y. Tang, H. Zhang, H. Zhong, Y. Ma, A facile synthesis of Pd/C cathode electrocatalyst for proton exchange membrane fuel cells. Int. J. Hydrog. Energy. 36, 725–731 (2011)

    CAS 
    Google Scholar 

  11. M. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. Vukmirovic et al., Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir. 22, 10409–10415 (2006)

    Article  CAS 
    Google Scholar 

  12. M.-H. Shao, K. Sasaki, R.R. Adzic, Pd− Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 128, 3526–3527 (2006)

    Article  CAS 
    Google Scholar 

  13. J. Salvador-Pascual, S. Citalán-Cigarroa, O. Solorza-Feria, Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media. J. Power Sources. 172, 229–234 (2007)

    Article  CAS 
    Google Scholar 

  14. H. Li, G. Sun, Q. Jiang, M. Zhu, S. Sun, Q. Xin, Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation. Electrochem. Commun. 9, 1410–1415 (2007)

    Article  CAS 
    Google Scholar 

  15. J.L. Fernández, V. Raghuveer, A. Manthiram, A.J. Bard, Pd− Ti and Pd− Co− Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J. Am. Chem. Soc. 127, 13100–13101 (2005)

    Article 
    Google Scholar 

  16. F. Fathirad, A. Mostafavi, D. Afzali, Bimetallic Pd–Mo nanoalloys supported on Vulcan XC-72R carbon as anode catalysts for direct alcohol fuel cell. Int. J. Hydrog. Energy. 42, 3215–21 (2017)

    CAS 
    Google Scholar 

  17. H. Rostami, A.A. Rostami, A. Omrani, Investigation on ethanol electrooxidation via electrodeposited Pd–Co nanostructures supported on graphene oxide. Int. J. Hydrog. Energy 40, 10596–10604 (2015)

    Article  CAS 
    Google Scholar 

  18. H. Rostami, A. Omrani, A.A. Rostami, On the role of electrodeposited nanostructured Pd–Co alloy on Au for the electrocatalytic oxidation of glycerol in alkaline media. Int. J. Hydrog. Energy 40, 9444–9451 (2015)

    Article  CAS 
    Google Scholar 

  19. S. Shiva Kumar, S. Ramakrishna, D. Bhagawan, V. Himabindu, Preparation of RuxPd1-xO2 electrocatalysts for the oxygen evolution reaction (OER) in PEM water electrolysis. Ionics. 24, 2411–2419 (2018)

    Article  CAS 
    Google Scholar 

  20. S. Shiva Kumar, S. Ramakrishna, K. Naga Mahesh, B. Rama Devi, V. Himabindu, Palladium supported on phosphorus–nitrogen dual-doped carbon nanoparticles as cathode for hydrogen evolution in PEM water electrolyser. Ionics. 25, 2615–2625 (2019)

    Article  CAS 
    Google Scholar 

  21. D. Panjiara, H. Pramanik, Electrooxidation study of glycerol on synthesized anode electrocatalysts Pd/C and Pd-Pt/C in a Y-shaped membraneless air-breathing microfluidic fuel cell for power generation. Ionics. 26, 2435–2452 (2020)

    Article  CAS 
    Google Scholar 

  22. S.S. Kumar, N. Hidyatai, J.S. Herrero, S. Irusta, K. Scott, Efficient tuning of the Pt nano-particle mono-dispersion on Vulcan XC-72R by selective pre-treatment and electrochemical evaluation of hydrogen oxidation and oxygen reduction reactions. Int. J. Hydrog. Energy 36, 5453–5465 (2011)

    Article  CAS 
    Google Scholar 

  23. Y.-H. Qin, H.-H. Yang, X.-S. Zhang, X.-G. Zhou, L. Niu, W.-K. Yuan, Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation. J. Power Sources. 196, 4609–4612 (2011)

    Article  CAS 
    Google Scholar 

  24. A.B.A.A. Nassr, A. Quetschke, E. Koslowski, M. Bron, Electrocatalytic oxidation of formic acid on Pd/MWCNTs nanocatalysts prepared by the polyol method. Electrochim. Acta. 102, 202–211 (2013)

    Article  CAS 
    Google Scholar 

  25. N. Arul Dhas, H. Cohen, A. Gedanken, In situ preparation of amorphous carbon-activated palladium nanoparticles. J. Phys. Chem. B. 101, 6834–6838 (1997)

    Article 
    Google Scholar 

  26. Y. Xiong, J.M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 127, 17118–17127 (2005)

    Article  CAS 
    Google Scholar 

  27. T. Teranishi, M. Miyake, Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 10, 594–600 (1998)

    Article  CAS 
    Google Scholar 

  28. S. Chen, K. Huang, J.A. Stearns, Alkanethiolate-protected palladium nanoparticles. Chem. Mater. 12, 540–547 (2000)

    Article  CAS 
    Google Scholar 

  29. V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources. 114, 32–53 (2003)

    Article  CAS 
    Google Scholar 

  30. X. Ding, S. Didari, T.F. Fuller, T.A. Harris, Membrane electrode assembly fabrication process for directly coating catalyzed gas diffusion layers. J. Electrochem. Soc. 159, B746 (2012)

    Article  CAS 
    Google Scholar 

  31. K. Mohanraju, P. Kirankumar, L. Cindrella, O.J. Kwon, Enhanced electrocatalytic activity of Pt decorated spinals (M3O4, M= Mn, Fe, Co)/C for oxygen reduction reaction in PEM fuel cell and their evaluation by hydrodynamic techniques. J. Electroanal. Chem. 794, 164–174 (2017)

    Article  CAS 
    Google Scholar 

  32. L. Cui, J. Zhang, H. Wang, S. Lu, Y. Xiang, The effects of different dimensional carbon additives on performance of PEMFC with low-Pt loading cathode catalytic layers. Int. J. Hydrog. Energy. 46, 15887–15895 (2021)

    Article  CAS 
    Google Scholar 

  33. G. Behmenyar, A.N. Akın, Investigation of carbon supported Pd–Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J. Power Sources. 249, 239–246 (2014)

    Article  CAS 
    Google Scholar 

  34. L. Yi, W. Wei, C. Zhao, C. Yang, L. Tian, J. Liu et al., Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell. Electrochim. Acta. 158, 209–218 (2015)

    Article  CAS 
    Google Scholar 

  35. J. Liu, L. Yi, X. Wang, Q. Zhao, Y. Zhang, J. Gao et al., Investigation of nanoporous carbon supported palladium–zinc nanocomposites as anode catalysts for direct borohydride–hydrogen peroxide fuel cell. Int. J. Hydrog. Energy. 40, 7301–7307 (2015)

    Article  CAS 
    Google Scholar 

  36. B. Jha, B. Mishra, B. Satpati, S. Ojha, Effect of thermal ageing on the evolution of microstructure and degradation of hardness of 2.25 Cr-1Mo steel. Mater. Sci. -Pol. 28, 335 (2010)

    CAS 
    Google Scholar 

  37. R.D. Nikam, A.-Y. Lu, P.A. Sonawane, U.R. Kumar, K. Yadav, L.-J. Li et al., Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 7, 23328–23335 (2015)

    Article  CAS 
    Google Scholar 

  38. M. Kempasiddaiah, V. Kandathil, R.B. Dateer, B. Sasidhar, S.A. Patil, S.A. Patil, Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction. Cellulose. 27, 3335–3357 (2020)

    Article  CAS 
    Google Scholar 

  39. M. Hara, U. Linke, T. Wandlowski, Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4: part I. Low-index phases. Electrochim. Acta. 52, 5733–48 (2007)

    Article  CAS 
    Google Scholar 

  40. S. Trasatti, O. Petrii, Real surface area measurements in electrochemistry. Pure Appl. Chem. 63, 711–734 (1991)

    Article  CAS 
    Google Scholar 

  41. M. Grdeń, M. Łukaszewski, G. Jerkiewicz, A. Czerwiński, Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochim. Acta. 53, 7583–7598 (2008)

    Article 
    Google Scholar 

  42. L.-I. Fang, Q. Tao, M.-F. Li, L.-W. Liao, D. Chen, Y.-X. Chen, Determination of the real surface area of palladium electrode. Chinese J. Chem. Phys. 23, 543–548 (2010)

    Article  CAS 
    Google Scholar 

  43. N. Kakati, J. Maiti, S. Lee, Y. Yoon, Core shell like behavior of PdMo nanoparticles on multiwall carbon nanotubes and their methanol oxidation activity in alkaline medium. Int. J. Hydrog. Energy. 37, 19055–19064 (2012)

    Article  CAS 
    Google Scholar 

  44. M. Shao, P. Liu, J. Zhang, R. Adzic, Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B. 111, 6772–6775 (2007)

    Article  CAS 
    Google Scholar 

  45. C. Jin, Z. Zhang, Z. Chen, Q. Chen, Effect of Ag modification on catalytic activity of Pd electrode for allyl alcohol oxidation in alkaline solution. Electrochim. Acta. 87, 860–864 (2013)

    Article  CAS 
    Google Scholar 

  46. W. Pan, X. Zhang, H. Ma, J. Zhang, Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C. 112, 2456–2461 (2008)

    Article  CAS 
    Google Scholar 

  47. X. Liu, L. Yi, X. Wang, J. Su, Y. Song, J. Liu, Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell. Int. J. Hydrog. Energy. 37, 17984–17991 (2012)

    Article  CAS 
    Google Scholar 

  48. S. Eris, Z. Daşdelen, F. Sen, Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018)

    Article  CAS 
    Google Scholar 

  49. M.H. Atwan, C.L. Macdonald, D.O. Northwood, E.L. Gyenge, Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J. Power Sources. 158, 36–44 (2006)

    Article  CAS 
    Google Scholar 

  50. Y. Zhang, Y. Hu, S. Li, J. Sun, B. Hou, Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell. J. Power Sources. 196, 9284–9289 (2011)

    Article  CAS 
    Google Scholar 

  51. Z. Xie, S. Holdcroft, Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes. J. Electroanal. Chem. 568, 247–260 (2004)

    Article  CAS 
    Google Scholar 

  52. Thanasilp S, Hunsom M. Effect of Pt: Pd atomic ratio in PtePd/C electrocatalyst-coated membrane on the electrocatalytic activity of ORR in PEM fuel cells. Renew. Energy. (2011)

  53. J. Li, F. Ye, L. Chen, T. Wang, J. Li, X. Wang, Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells. J Power Sources. 186, 320 (2009)

    Article  CAS 
    Google Scholar 

Download references

You may also like

Leave a Reply

Your email address will not be published. Required fields are marked *

A major key, never panic. Don’t panic, when it gets crazy and rough, don’t panic, stay calm. They will try to close the door on you, just open it. Another one.

Company links

Contact info

Address: 1379 Shoreline Parkway, Mountain View, CA 94043, United States.

Phone: +84 1800-33-999
E-mail: info@example.com

Copyright © 2022 Ultra Batteries. All rights reserved.